Routh's Theorem and Related Relationships

Consider a triangle $A B C$ with sides a, b and c as shown below, where the labels on points give their rectangular coordinates (x, y) in brackets. The points D, E, and F divide the sides as shown, where α, β and γ have values in the range $0 \ldots 1$ with $\alpha+\alpha^{\prime}=\beta+\beta^{\prime}=\gamma+\gamma^{\prime}=1$. Routh's theorem gives the area of triangle $G H I$ in terms of the area of triangle $A B C$.

Results will also be given in Routh's form which uses the ratios of the two parts of each side 1:x, 1: y and $1: z$ in place of α, β and γ.

Using the equation for a line through two points, the relationships between x and y on the lines $A E$ can be derived as:

$$
\begin{equation*}
x=\left(\frac{u-\alpha^{\prime} a}{v}\right) y+\alpha^{\prime} a \tag{1}
\end{equation*}
$$

Similarly, for line BF:

$$
\begin{equation*}
x=\left(\frac{\beta u-a}{\beta v}\right) y+a \tag{2}
\end{equation*}
$$

and line $C D$:

$$
\begin{equation*}
x=\left(\frac{\gamma a+\gamma^{\prime} u}{\gamma^{\prime} v}\right) y \tag{3}
\end{equation*}
$$

The height (y_{I}) of point / above the baseline can now be determined by solving for the intersection of lines $B F$ and $C D$ using equations (2) and (3) to give:

$$
\begin{equation*}
\frac{y_{I}}{v}=\frac{\beta(1-\gamma)}{1-\gamma+\beta \gamma} \tag{4}
\end{equation*}
$$

And, since triangles $A B C$ and $B C I$ have the same base, the areas are in the same ratio.

We hence obtain:

$$
\begin{equation*}
\frac{\Delta B C I}{\Delta A B C}=\frac{\beta(1-\gamma)}{1-\gamma+\beta \gamma}=\frac{y}{1+y+y z} \tag{5}
\end{equation*}
$$

By cyclically rotating the values α, β and γ in this equation we can obtain:

$$
\begin{equation*}
\frac{\Delta C A G}{\Delta A B C}=\frac{\gamma(1-\alpha)}{1-\alpha+\gamma \alpha}=\frac{z}{1+z+z x} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\Delta A B H}{\Delta A B C}=\frac{\alpha(1-\beta)}{1-\beta+\alpha \beta}=\frac{x}{1+x+x y} \tag{7}
\end{equation*}
$$

Since the area of triangle $A B C$ is the sum of the areas of the four triangles $B C I$, CAG, ABH and GHI, the area of the latter can now be expressed as:

$$
\begin{equation*}
\frac{\Delta G H I}{\Delta A B C}=1-\left\{\frac{\beta(1-\gamma)}{1-\gamma+\beta \gamma}+\frac{\gamma(1-\alpha)}{1-\alpha+\gamma \alpha}+\frac{\alpha(1-\beta)}{1-\beta+\alpha \beta}\right\} \tag{8}
\end{equation*}
$$

which reduces to:

$$
\begin{equation*}
\frac{\Delta G H I}{\Delta A B C}=\frac{\{1-(\alpha+\beta+\gamma)+(\alpha \beta+\beta \gamma+\gamma \alpha)-2 \alpha \beta \gamma\}^{2}}{(1-\alpha+\gamma \alpha)(1-\beta+\alpha \beta)(1-\gamma+\beta \gamma)} \tag{9}
\end{equation*}
$$

In Routh's form this becomes:

$$
\begin{equation*}
\frac{\Delta G H I}{\Delta A B C}=\frac{(x y z-1)^{2}}{(1+x+x z)(1+y+y x)(1+z+z y)} \tag{10}
\end{equation*}
$$

The height $\left(y_{H}\right)$ of point H above the baseline can be determined similarly by solving for the intersection of lines $A E$ and $B F$ with equations (1) and (2) giving:

$$
\begin{equation*}
\frac{y_{H}}{v}=\frac{\alpha \beta}{1-\beta+\alpha \beta} \tag{11}
\end{equation*}
$$

Since the base of triangle $B E H$ is αa we can now derive the ratio of the areas of triangles $B E H$ and $A B C$ as:

$$
\begin{equation*}
\frac{\Delta B E H}{\Delta A B C}=\frac{\alpha^{2} \beta}{1-\beta+\alpha \beta}=\frac{x^{2} y}{(1+x)(1+x+x y)} \tag{12}
\end{equation*}
$$

By cyclically rotating the values α, β and γ in this equation we can now obtain:

$$
\begin{equation*}
\frac{\Delta C F I}{\Delta A B C}=\frac{\beta^{2} \gamma}{1-\gamma+\beta \gamma}=\frac{y^{2} z}{(1+y)(1+y+y z)} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\Delta A D G}{\Delta A B C}=\frac{\gamma^{2} \alpha}{1-\alpha+\gamma \alpha}=\frac{z^{2} x}{(1+z)(1++z x)} \tag{14}
\end{equation*}
$$

These and earlier area relationships now allow all seven sub areas of triangle $A B C$ to be determined.

